Fast Quality Control with Diffractive Micro- and Nanostructures

A. Homsy¹, C. Rytka²,⁴, J. Gobrecht², J. Pierer³, C. Bosshard³, N. de Rooij¹

¹: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), SAMLAB, 2000 Neuchâtel
²: Paul Scherrer Institut (PSI), INKA, 5210 Windish
³: Centre Suisse d’Électronique et de Microtechnique S.A. (CSEM), Section Optics and Packaging, 6055 Alpnach
⁴: EMS-CHEMIE A.G., Business unit EMS-GRIVORY, 7013 Domat/Ems
CTI Project “Qualinject”

- Economic impact
- Market example: lab-on-chip diagnostic devices
- Collaborative project
- The idea
- Replication of micro and nanostructures
- Laser measurements of test structures
- Summary and Outlook
Economic Impact

Optimizing plastic molding:
• Facilitates mass production of microtechnology
• Promotes the swiss industry at various levels (material, production, development, sales)

Holographic structures from 3D A.G.

Grilamid TR of EMS-GRIVORY

Molded nanostructures from Injector S.A.
Market Example

- Lab-on-chip systems for medical diagnostics
- Typical dimensions: 5-100 µm
- Complex structures with packed geometry
- Replacement of silicon and glass by polymers

Microfluidic Chip From Claros Diagnostics S.A.R.L

Quantitative immunoassay blood tests.

NucliPrep™ lab-on-chip platform from Ayanda Biosystems S.A.

RNA extraction and purification from cells.
Collaborative Project

➢ Partners from industry
 – 3D A.G. (Main partner)
 – Claros Diagnostics S.A.R.L.
 – EMS-CHEMIE A.G.
 – Ayanda Biosystems S.A.
 – Injector S.A.

➢ Partners from research
 – EPFL IMT, CSEM Alpnach, PSI INKA
The Idea

• Integration of quality control structures
 – Quality testing on site
 – Improved efficiency

• Show sensitivity of diffraction structures to
 – process variations
 – Structure height
Replication of Micro and Nanostructures

- Silicon masters (photolithography and RIE)
- Replication by injection moulding
- Material: PMMA, COC, PC, PA-TR (Grilamid TR of EMS)
- Master and replica detailed analysis methods:
 - Light microscopy
 - Confocal Laser Scanning Microscopy (CLSM)
 - Atomic Force Microscopy (AFM)
 - Scanning Electron Microscopy (SEM)
Diffractive Micro and Nanostructures

Silicon master

Polymer replica

Depth = 120nm
Period = 10μm

Height = 100nm
Period = 10μm
Laser Measurements of Test Structures

He-Ne Laser \(\lambda=633\text{nm}\)

3D adjustable stage for micro structured samples

Tiltable CMOS-camera with prism

Periodicity: 10 \(\mu\text{m}\)

Reflected Diffraction Patterns

Transmitted Diffraction Patterns

Periodicity: 4 \(\mu\text{m}\)

Scanning layer
Influence of Periodicity on Diffraction Angle

\[m \lambda = 2 \Lambda \sin \phi \]

Good correlation between calculated and measured diffraction angle

<table>
<thead>
<tr>
<th>Diffraction order m</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (\lambda) [nm]</td>
<td>633</td>
<td>633</td>
<td>633</td>
</tr>
<tr>
<td>Period (\Lambda) [nm]</td>
<td>2580</td>
<td>4000</td>
<td>10000</td>
</tr>
<tr>
<td>Diffraction angle (\phi) [°]</td>
<td>14.20</td>
<td>9.11</td>
<td>3.63</td>
</tr>
</tbody>
</table>
Influence of Structure Height on Diffraction Intensity

Good correlation between total diffraction intensity and structure height
Influence of Defects on Diffraction Pattern

Defects → Irregular diffraction peaks
→ Lower separation between diffraction peaks
Influence of UV radiation on Diffraction Pattern
Summary

• Large replication differences dependent on polymer and processing
• Laser diffraction patterns:
 – Suitable for quality control of replication accuracy
 – Differentiation between various periodicities, structure quality and heights
 – Detection of defects and material degradation
• Best replication achieved with PA-TR1 (Grilamid TR of EMS) and PMMA
Outlook

- Holographic structures
- New portable laser diffraction measurement setup
- Study correlation limitations by combining micro and nano structures
- Validation with microfluidic applications
Acknowledgements

• CTI Feasibility study n°9793.1 PFNM-NM for funding
• Swiss MNT network for funding

• D. Rosenfeld and P. Pouget for their initial input

• Eulitha AG, Villigen (Dr. H. Solak) for providing the Si master stamp for nanopattern replication

• R. Hauser (3D A.G.), V. Linder (Claros Diagnostics S.A.R.L.), S. Makohliso (Ayanda Biosystems S.A.), P. Chamarande (Injector S.A.), C. Kruse and S. Wick (EMS-CHEMIE A.G.) for their support all along the project